Latest News

15th Symposium of the Center for Neuroendocrine Studies University of Massachusetts, Amherst

The Center for Neuroendocrine Studies at UMass, Amherst would like to announce our 15th Symposium entitled, "Promiscuous Molecules: Hormones, Immunity, and Evolution in the Brain" which will take place on Saturday, September 26th, 2015.
Call for applications for Poster Awards at the SBN annual meeting - deadline May 25

Poster Award applications are limited to presenters that conducted the research as undergraduate or graduate students...

Welcome from the President

SBN President Cheryl Sisk.

Welcome to the website of the Society for Behavioral Neuroendocrinology (SBN). Since 1996, the SBN has been promoting intellectual exchanges between scientists who have interests in the interactions of the nervous system and the endocrine system on behavior and in the influences of behavior and the environment on neuroendocrine systems. We are an inclusive society with a very diverse membership. Our members are interested in quite an array of behaviors – reproductive behavior, parental behaviors, social behaviors, eating and drinking, responses to stressors, learning and memory, aggression and more, as well as mental health. We are interested in a wide range of species, from simple organisms, like c. elegans to humans and everything in between. We are interested in interactions at the molecular, cellular, and organismic/behavioral level of investigation. We work in laboratories, as well as in the field. Many of our members study natural behaviors, which in turn shed light on behavioral disorders, which often have strong neuroendocrine components. This rich mixture of ideas and approaches can be seen in the Society’s journal, Hormones and Behavior , and can be enjoyed at our vibrant, annual meetings.

Become a Member of the SBN

The Society for Behavioral Neuroendocrinology offers four levels of eligibility for prospective members: Regular, Emeritus, Student, or Associate Memberships.

To see which membership class you qualify for, please review the membership eligibility requirements.

For additional information on SBN and the rules of membership, please see the SBN Bylaws.

join now

Elected Officers

PRESIDENT (2013-2015) Cheryl Sisk

PRESIDENT-ELECT (2013-2015) Elizabeth Adkins-Regan

PAST PRESIDENT (2013-2015) Jeffrey Blaustein

SECRETARY (2013-2015) Zuoxin Wang

TREASURER (2013-2016) Nancy Forger

view more

Hormones and Behavior

Friday, June 26, 2015
Publication date: July 2015
Source:Hormones and Behavior, Volume 73

Author(s): Andreas Stengel , Hiroshi Karasawa , Yvette Taché

Somatostatin was discovered four decades ago as hypothalamic factor inhibiting growth hormone release. Subsequently, somatostatin was found to be widely distributed throughout the brain and to exert pleiotropic actions via interaction with five somatostatin receptors (sst1–5) that are also widely expressed throughout the brain. Interestingly, in contrast to the predominantly inhibitory actions of peripheral somatostatin, the activation of brain sst2 signaling by intracerebroventricular injection of stable somatostatin agonists potently stimulates food intake and independently, drinking behavior in rodents. The orexigenic response involves downstream orexin-1, neuropeptide Y1 and μ receptor signaling while the dipsogenic effect is mediated through the activation of the brain angiotensin 1 receptor. Brain sst2 activation is part of mechanisms underlying the stimulation of feeding and more prominently water intake in the dark phase and is able to counteract the anorexic response to visceral stressors.

Friday, June 26, 2015
Publication date: July 2015
Source:Hormones and Behavior, Volume 73

Author(s): Zina Model , Matthew P. Butler , Joseph LeSauter , Rae Silver

Androgens act widely in the body in both central and peripheral sites. Prior studies indicate that in the mouse, suprachiasmatic nucleus (SCN) cells bear androgen receptors (ARs). The SCN of the hypothalamus in mammals is the locus of a brain clock that regulates circadian rhythms in physiology and behavior. Gonadectomy results in reduced AR expression in the SCN and in marked lengthening of the period of free-running activity rhythms. Both responses are restored by systemic administration of androgens, but the site of action remains unknown. Our goal was to determine whether intracranial androgen implants targeted to the SCN are sufficient to restore the characteristic free-running period in gonadectomized male mice. The results indicate that hypothalamic implants of testosterone propionate in or very near the SCN produce both anatomical and behavioral effects, namely increased AR expression in the SCN and restored period of free-running locomotor activity. The effect of the implant on the period of the free-running locomotor rhythm is positively correlated with the amount of AR expression in the SCN. There is no such correlation of period change with amount of AR expression in other brain regions examined, namely the preoptic area, bed nucleus of the stria terminalis and premammillary nucleus. We conclude that the SCN is the site of action of androgen effects on the period of circadian activity rhythmicity.

Graphical abstract


Friday, June 26, 2015
Publication date: July 2015
Source:Hormones and Behavior, Volume 73

Author(s): Peng Yu , Hui Zhang , Xibo Li , Fengqin He , Fadao Tai

Although the effect of early social environments on maternal care in adulthood has been examined in detail, few studies have addressed the long-term effect on paternal care and its underlying neuroendocrine mechanisms. Here, using monogamous mandarin voles (Microtus mandarinus) that show high levels of paternal care, the effects of early bi-parental separation (EBPS) or neonatal paternal deprivation (NPD) on adult paternal behavior, serum corticosterone levels, and receptor mRNA expression in the nucleus accumbens (NAcc) and medial preoptic area (MPOA) were investigated. Compared to the parental care group (PC), we found that EBPS reduced crouching behavior and increased inactivity, self-grooming, and serum corticosterone levels in adult offspring; and NPD significantly reduced retrieval behavior and increased self-grooming behavior of offspring at adulthood. EBPS displayed more dopamine type I receptor (D1R) mRNA expression in the NAcc, but less oxytocin receptor (OTR) mRNA expression than PC in the MPOA. Both EBPS and NPD exhibited more mRNA expression of estrogen receptor alpha (ERα) than PC in the MPOA. In the EBPS group, increased serum corticosterone concentration was closely associated with reduced crouching behavior, and reduced expression of OTR was closely associated with altered crouching behavior and increased D1R expression. Our results provide substantial evidence that EBPS or NPD has long-term consequences and reduces paternal behavior in adult animals. Importantly the oxytocin system in the MPOA might interact with NAcc dopamine systems to regulate paternal behavior and EBPS may affect interactions between the MPOA and NAcc.

learn more