Latest News

2015 Election Results

Congratulations to President-Elect Rae Silver and Secretary Colin J. Saldanha.

Nominations for the Lehrman, Beach, and Young Awards are now being accepted. The deadline for nominations is September 15, 2015.

Welcome from the President

SBN President Cheryl Sisk.

I am delighted and honored to be your new President. SBN is a wonderful organization that provides significant benefits to its members. I look forward to helping the society meet your interests and needs in science and professional development, and I encourage you to share your ideas about how SBN can best serve you.

—Elizabeth Adkins-Regan

Upcoming Meetings

Become a Member of the SBN

The Society for Behavioral Neuroendocrinology offers four levels of eligibility for prospective members: Regular, Emeritus, Student, or Associate Memberships.

To see which membership class you qualify for, please review the membership eligibility requirements.

For additional information on SBN and the rules of membership, please see the SBN Bylaws.

join now

Elected Officers

PRESIDENT (2015-2017) Elizabeth Adkins-Regan

PRESIDENT-ELECT (2015-20175) Rae Silver

PAST PRESIDENT (2015-2017) Cheryl Sisk

SECRETARY (2015-2017) Colin John Saldanha

TREASURER (2013-2016) Nancy Forger

view more

Hormones and Behavior

Thursday, July 30, 2015
Publication date: Available online 29 July 2015
Source:Hormones and Behavior

Author(s): Michelle A. Rensel, Jesse M.S. Ellis, Brigit Harvey, Barney A. Schlinger

Estrogens significantly impact spatial memory function in mammalian species. Songbirds express the estrogen synthetic enzyme aromatase at relatively high levels in the hippocampus and there is evidence from zebra finches that estrogens facilitate performance on spatial learning and/or memory tasks. It is unknown, however, whether estrogens influence hippocampal function in songbirds that naturally exhibit memory-intensive behaviors, such as cache recovery observed in many corvid species. To address this question, we examined the impact of estradiol on spatial memory in non-breeding Western scrub-jays, a species that routinely participates in food caching and retrieval in nature and in captivity. We also asked if there were sex differences in performance or responses to estradiol. Utilizing a combination of an aromatase inhibitor, fadrozole, with estradiol implants, we found that while overall cache recovery rates were unaffected by estradiol, several other indices of spatial memory, including searching efficiency and efficiency to retrieve the first item, were impaired in the presence of estradiol. In addition, males and females differed in some performance measures, although these differences appeared to be a consequence of the nature of the task as neither sex consistently out-performed the other. Overall, our data suggest that a sustained estradiol elevation in a food-caching bird impairs some, but not all, aspects of spatial memory on an innate behavioral task, at times in a sex-specific manner.

Thursday, July 30, 2015
Publication date: Available online 29 July 2015
Source:Hormones and Behavior

Author(s): Pauline Yahr

Aromatase, the enzyme that aromatizes androstenedione (A) to estrone and testosterone (T) to estradiol (E), affects androgen control of male sex behavior in many vertebrates. In male monkeys, rats and quail, E mimics the ability of T to promote mating, and aromatase inhibitors block mating induced by T but not E. Aromatase inhibitors include androgens with different A-rings than T and A, e.g., 1,4,6-androstatriene-3,17-dione (ATD), azoles, e.g., fadrozole, and androgens α-halogenated at carbon 6, e.g., 6α-bromoA, 6α-fluoroA and 6α-fluoroT. 6α-FluoroT is the only 6α-halogenated androgen studied in regard to mating. It promotes mating in male rats and quail and was studied, before it was known to inhibit aromatase, because it can not be aromatized yet has the same A-ring as T. 6α-FluoroT might promote mating by binding estrogen receptors (ER) directly, i.e., unassisted, or by metabolism to an androgen that binds ER. Since neither process would require aromatase, this study tested both hypotheses by determining how mating induced in castrated male rats by 6α-fluoroT is affected by ATD and fadrozole. Both aromatase inhibitors inhibited the effects of 6α-fluoroT on mating. Thus, 6α-fluoroT does not promote mating by direct ER binding or metabolism to another androgen. Since aromatase underlies a process in which 6α-fluoroT, unlike most nonaromatizable androgens, mimics T effects on male sex behavior, the process must involve a feature that 6α-fluoroT shares with T but not other nonaromatizable androgens. A-ring structure is a candidate. A hypothesis is also offered for how aromatase may participate without aromatizing the androgen.

Thursday, July 30, 2015
Publication date: Available online 29 July 2015
Source:Hormones and Behavior

Author(s): Xuqi Chen, Lixin Wang, Dawn Loh, Christopher Colwell, Yvette Taché, Karen Reue, Arthur P. Arnold

We measured diurnal rhythms of food intake, as well as body weight and composition, while varying three major classes of sex-biasing factors: activational and organizational effects of gonadal hormones, and sex chromosome complement (SCC). Four Core Genotypes (FCG) mice, comprising XX and XY gonadal males and XX and XY gonadal females, were either gonad-intact or gonadectomized (GDX) as adults (2.5months); food intake was measured second-by-second for 7days starting 5weeks later, and body weight and composition were measured for 22weeks thereafter. Gonadal males weighed more than females. GDX increased body weight / fat of gonadal females, but increased body fat and reduced body weight of males. After GDX, XX mice had greater body weight and more fat than XY mice. In gonad-intact mice, males had greater total food intake and more meals than females during the dark phase, but females had more food intake and meals and larger meals than males during the light phase. GDX reduced overall food intake irrespective of gonad type or SCC, and eliminated differences in feeding between groups with different gonads. Diurnal phase of feeding was influenced by all three sex-biasing variables. Gonad-intact females had earlier onset and acrophase (peak) of feeding relative to males. GDX caused a phase-advance of feeding, especially in XX mice, leading to an earlier onset of feeding in GDX XX vs. XY mice, but earlier acrophase in GDX males relative to females. Gonadal hormones and SCC interact in the control of diurnal rhythms of food intake.

learn more